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Abstract

Remote medicine is an emerging and important field with the potential to improve patients health at

the distance of a teleconsultation. Here, we propose a novel remote photoplethysmography algorithm

suited to extract pulse rate variability in real-time from the face of a patient that is being recorded by

a consumer-grade webcam. We first test the algorithm with the UBFC dataset, which contains both

webcam videos of subjects’s faces plus the corresponding blood volume pulse extracted via finger clip

photoplethysmography. Average errors between pulse rate variability features extracted from finger pho-

toplethysmography and webcam remote photoplethysmography are as folllows: 20,46 ms for SDNN,

39,21 ms for RMSSD, 16,89% for %LF (nu) and 1,09 for LF/HF ratio. Although this amount of error show

that the proposed method is not ready for fine medical diagnostic, we suggest that webcam face videos

are a promising source of remote medical data, with potential for patient classification and severity di-

agnosis. Furthermore we also validate the real-time algorithm with an experiment where both PPG and

rPPG are recorded at the same time, from a bluetooth PPG sensor and a computer webcam, respec-

tively, and in which we can see concordance. Because the autonomic nervous system plays a big role

in regulating the human heart rate, a remote, real-time pulse rate variability sensor might be of extreme

interest for telepsychology and telepsychiatry alike.
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Resumo

A medicina remota é um tópico emergente e importante com o potencial de melhorar a saúde de uma

pessoa apenas à distância de uma teleconsulta. Neste trabalho, é proposto um novo algoritmo para

extrair a varaibilidade do ritmo do pulso a partir de fotopletismografia remota em tempo real, a partir do

vı́deo de webcam da cara de um paciente. Em primeiro lugar testa-se o algoritmo na base de dados

da UBFC, que contém vı́deos da cara de sujeitos acompanhados do sinal de pulso obtido a partir de

fotopletismografia de dedo. O erro médio entre os parâmetros extraı́dos a partir do sinal da webcam e

do sinal do dedo são os seguintes: 20,46 ms para a SDNN, 39,21 ms para a RMSSD, 16,89% para a

%LF (nu) and 1,09 para o rácio LF/HF. Embora estes números demonstrem que o método proposta não

será capaz de produzir diagnósticos finos, sugerimos que vı́deos de webcam são uma fonte de data

biomédica promissora, com potencial para conseguir classificar pacientes e nı́veis de doença. Para

além disso, também validamos o algoritmo em tempo real com uma experiência em que tanto o sinal

fotopletismográfico do dedo como o sinal remoto da cara são obtidos ao mesmo tempo, de um sensor

bluetooth e de uma webcam de um computar, respetivamente, e no qual se pode ver concordância entre

sensores. Como o sistema nervoso autónomo desempenha um papel na regulação do ritmo cardı́aco,

um algoritmo remoto, que trabalha em tempo-real pode ser de interesse tanto para a telepsicologia,

como para a telepsiquiatria.

Palavras Chave

Vı́deo facial; Fotopletismografia remota; Ritmo cardı́aco; Variabilidade do ritmo cardı́aco; Variabilidade

do ritmo do pulso.
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1.1 Background

For several years physicians have monitored heart rhythms through auscultation and have noted that

beat-to-beat times shift depending on age, illness and psychological state [1]. From Herophilos and

Galen describing the pulse with the naked-eye to Ludwig (smoked drum kymograph) and Einthoven

(galvanometer) measuring mechanical and electrical cardiac variables, monitoring the beating of the

heart has seen a lot of technological and theoretical advances throughout history [2]. Some of the

historical turning points along with introductory concepts follows.

In 1781, Galvani observed “animal electricity” through electric stimulation of frog nerves, setting the

basis for biological electrophysiology experimentation [3]. Only many years later, in 1842, Mateucci

demonstrated that electrical current accompanies every heart beat, also using a frog. In 1887, Waller

publishes the first human Electrocardiogram (ECG). Using electrodes placed on the chest and back

of a human, Waller demonstrates that electrical activity preceded ventricular contraction. [4] In 1901,

Einthoven invents the string galvanometer, a device that could measure ECG signals accurately and,

later in 1906, he proposes the clinical use of ECG patterns to detect arrhythmias [5].

Heart rate (HR) is defined as the number of heartbeats per minute and Heart rate variability (HRV)

concerns the fluctuation in the time intervals between adjacent heartbeats [6]. In Figure 1.1 we can see

a short segment of an ECG illustrating five heart beats and the respective time difference between all

consecutive pairs of beats. HR variation ensures optimal adaption to environmental challenges [7] and

is a reflection of the many physiological factors modulating the normal rhythm of the heart, namely the

coordination of autonomic, respiratory, circulatory, endocrine and mechanical influences over time [8].

Figure 1.1: Five time differences (in milliseconds) between six heartbeats via electrocardiogram.

Later on, in 1937, Alrick Hertzman introduces Photoplethysmography (PPG), a method to detect

the cardio-vascular pulse waves traveling through the body [9]. He proceeds with several publications

examining the physiology and potential uses of the PPG waveform [10–13]. The PPG waveform, usually

extracted with a pulse oximeter [14], and respective pulse time differences can be seen in Figure 1.2.

3



Figure 1.2: Five time differences (in milliseconds) between six pulses via photoplethysmography. This figure is not
in scale.

Both ECG and PPG capture the rhythms of the heart, as both can identify the heart beat waveform:

computing HR and HRV through ECG R-peaks is similar to calculating Pulse rate (PR) and Pulse rate

variability (PRV) through PPG pulse peaks. Although some authors have observed that PRV is an

accurate estimate of HRV for young, healthy subjects at rest [15], recent studies strongly suggest that

PRV is new biomarker, which can be thought of HRV plus other biomedical information [16].

Although inter-beat time differences have traditionally been extracted from ECG or PPG, other tech-

nologies are available, such as smartphone optical pulse sensors, remote (or imaging) photopletys-

mography (i.e. photopletysmography through video camera), ultrasounds, microwave radar, cushion-

mounted ballistocardiogram, even toilet seats [8].

In 2008, remote Photoplethysmography (rPPG) research oficially started with reports that a subject’s

face contains a signal sufficiently rich to measure the PR under ambient light, using only a camera and

digital signal processing [17]. It was followed by a research group detecting photoplethysmographic

signals using a standard laptop webcam, in 2010 [18]. In 2013, [19] innovated rPPG, introducing a

chrominance-based method that used “skin-tone standardization” as a means to extract a more motion-

robust signal, arguing that an optimal fixed combination of RGB channel signals can be found based on

a ratio of normalized color signals when assuming “standardized” skin, thus eliminating noise derived

from specular reflection. Later, in 2016, [20] introduces another chrominance-based method with even

superior results.

HRV is popular in psychological science because it allows for lowcost, non-invasive, and accessible

autonomic information [21]. Indeed, the ANS activity is seen as a major component of the emotional

response in many theories of emotion [22]. Not only it has been reported that a lower HRV may be a

predictor of depression [23,24], but also that HRV is associated with general mental disorder [25], social

cognition [26], executive function [27] and emotional regulation [28].

In this thesis, it is considered the case of psychology telemedicine consultations delivered via a video

web platform. In this case, the input is video from a subject’s face, from which it can be estimated the

Blood volume pulse (BVP) signal and consequential PR and PRV measures.
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1.2 Novelty

A real-time pipeline for PRV analysis from asynchronous webcam face video is proposed, along with a

modification of a recent peak detection algorithm.

1.3 Thesis layout

This thesis is is organized as follows: Chapter 2 provides an up to date literature review on HRV,

PPG, PRV and rPPG principles and methods; Chapter 3 lays out the digital signal processing pipeline

proposed to accomplish real-time pulse rate variability measurements from a consumer-grade webcam;

Chapter 4 describes how the proposed rPPG method was tested both in offline and online contexts and

discusses results and, lastly, Chapter 5 draws final conclusions and proposes future work.
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This literature review aims at introducing the concepts underlying estimation of PRV from remote

photoplethysmographic signals. It is divided in three sections. First, an introduction to HRV (2.1), where

we review the physiological beating of the heart and how we can record its time-varying behaviour

through the ECG to produce a collection of HRV measures for a range of applications. Next, a small

section describing the principles of the photoplethysmography technique (2.2), which appears as an

alternative to ECG for obtaining inter beat times. Some examples on how researchers experiment with

pulse rate variability within psychology and psychiatry are provided in section (2.3). Finally, an up to

date review on the rPPG technique (2.4)..

2.1 Heart rate variability

This section is organized as follows: first, the heart and its beating behaviour are described (2.1.1),

followed by a review on the mechanisms behind regulation of heart rate (2.1.2); after that, a brief expla-

nation on how heartbeat times are collected through the ECG (2.1.3); next, RR intervals are introduced

as the central piece in HRV analysis (2.1.4), followed by a description of HRV metrics and norms (2.1.5)

and finally, applications of HRV to pychological science (2.1.6) and depression (2.1.7) are presented.

2.1.1 Heart and heartbeat

For oxygen, nutrients and waste disposal, cells rely on surrounding interstitial fluid, which is kept sta-

ble through continuous exchange between the peripheral tissues and circulating blood. If blood stops

moving, supplies of oxygen and nutrients will quickly exhaust and wastes are no longer absorbed. Car-

diovascular functions ultimately depend on the heart. [29]

Muscular heart is composed of two atria and two ventricles. See Figure 2.1. Ventricles, the lower

chambers, pump blood into lungs and arteries, while atria, the upper chambers, receive the returning

venous blood. In a single heartbeat, atria and ventricles contract in a coordinated manner so that

blood flows in the correct direction, at the correct time. A brief resting phase follows, allowing time

for the chambers to relax and prepare for the next heartbeat. These phenomena are associated with

the cardiac cycle, which consists of systole (ventricular contraction; blood pressure peaks) and diastole

(ventricular relaxation; blood pressure reaches a minimum) [30].

Two types of cardiac muscle cells generate the heartbeat: (1) contractile cells produce strong con-

tractions that cause the heart chamber to shrink and propel blood, and (2) specialized noncontractile

muscle cells of the conducting system control modulate contractile cells. Contractile muscle cells, which

comprise the majority of cardiac muscle cells, are activated by external action potentials, similarly to

skeletal muscle. On the other side, noncontractile muscle cells are less in number and organized as a

network made up of two types of cells: nodal cells and conducting cells. Nodal cells are autorhythmic,

9



Figure 2.1: Basic muscular anatomy of the heart. Credit: AlilaSaoMai/Shutterstock.com

i.e. they contract on their own, without neural or hormonal stimulation, and generate the pacemaker

potentials responsible for initiating the muscular heartbeat. They are located at the Sinoatrial (SA) and

Atrioventricular (AV) nodes. However, nodal cells from the SA node naturally depolarize faster, 70–80

action potentials per minute, than those in the AV node, 40–60 action potentials per minute, being the

effective pacemaker cells in the heart. In healthy hearts, the SA node generates an electrical impulse

that travels through the atria to the AV node in about 0.03 seconds and causes the AV node to fire.

Conducting cells interconnect these two nodes and distribute the contractile stimulus throughout the

myocardium. Basically, once the stimulus for a contraction is generated at the SA node, it is distributed

so that (1) the atria contract together, before the ventricles; and (2) only after, the ventricles contract

together. [29,31–33] See Figure 2.3 a).

2.1.2 Regulation of the heart rate

Although the SA node spontaneously generates the normal heartbeat cardiac rhythm, autonomic mo-

tor neurons, circulating hormones and ions can influence the inter-beat interval and magnitude of the

myocardial contraction [34]. More specifically, the cardiovascular center, located in the brain stem,

integrates sensory information from various bodily receptors and responds through sympathetic and

parasympathetic motor neurons (and endocrine systems), adjusting the HR continuously [35]. See Fig-

ure 2.2.

Cardiac sympathetic nerves target the SA node, AV node, and the bulk of the myocardium and

trigger norepinephrine and epinephrine release and binding to beta-adrenergic (b1) receptors located

on cardiac muscle fibers, speeding up spontaneous depolarization in the SA and AV nodes (increasing
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Figure 2.2: Autonomic innervation of the heart. Adapted from (Martini, 2018).

HR) [36]. The parasympathetic vagus (X) nerves also innervate the SA node, AV node, and atrial

cardiac muscle and trigger acetylcholine release and binding to muscarinic receptors, decreasing the

rate of spontaneous depolarization in the SA and AV nodes (slowing HR) [37]. In the end, there should

be a continuous, dynamic balance between Sympathetic nervous system (SNS) and Parasympathetic

nervous system (PNS) influences, resulting in some time-varying HR. It is observed that PNS control

predominates at rest, resulting on an average of 75 bpm. Furthermore, while sudden changes in HR (up

or down) between one beat and the next are parasympathetically mediated, an increase in sympathetic

activity is the principal method used to increase HR above the intrinsic level generated by the SA node.

PNS activation acts much faster (< 1s) on HR than SNS activation (> 5s). [38–41] HRV analysis is, thus,

a widely accepted method for indirect evaluation of the Autonomic nervous system (ANS) activity [42,43]

2.1.3 The electrocardiogram

The cardiac electrical phenomena is powerful enough to be detected by electrodes placed on the body

surface. The ECG [44] can record the action of the cardiac muscle conduction system, as seen in Figure

2.3 b). The main features of an ECG are: 1) the P wave, which indicates the depolarization of the atria,

2) the QRS complex, which appears as the ventricles depolarize (here, the electrical signal peaks in

amplitude since the mass of the ventricular muscle is much larger than that of the atria) and 3) the T
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wave, which accompanies the repolarization of the ventricles. [29]

Figure 2.3: a) The depolarization and repolarization of the heart during a beating cycle. b) Associated electrical
activity via electrocardiogram. 1 - P wave; 2 - PR segment; 3 - QRS complex; 4 - ST segment and 5 -
T wave. Credit: AlilaSaoMai/Shutterstock.com

2.1.4 HRV principles

The triad P wave, QRS-complex and T wave and their relationship with heart’s contraction can be fully

visualized in Figure 2.3. HRV is usually measured through QRS-complex distances in the ECG signal

[45]. RR intervals refer to the time interval between R-peaks in the QRS-complexes. Normal-to-normal

(NN) interval time series contain only RR intervals resulting from sinus node depolarizations, i.e., clean,

true intervals [46]. In Figure 1.1, we can see five RR intervals computed from the R-peaks of the ECG.

From a given sequence of RR intervals extracted for some period of time, it is possible to extract features

and statistics that describe the modulation of cardiovascular function, i.e. HRV analysis.
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2.1.5 HRV metrics and norms

Researchers usually report long-term (1 − 24h), short-term ( 5min) and ultra-short-term (< 5min) HRV

readings, using time-domain, frequency-domain, and non-linear measurements [47]. Short-term and

ultra-short-term values are not interchangeable with 24 h values, since longer recording epochs repre-

sent processes with slower fluctuations better (e.g. circadian rhythms) [48].

Time-domain metrics of HRV quantify the amount of variability in the measurement of RR intervals

through statistics like average and standard deviation. Frequency-domain measurements estimate the

power spectral density of a given RR signal into four frequency bands: Ultra low frequency (ULF), Very

low frequency (VLF), Low frquency (LF), and High frequency (HF) bands. See Figure 2.4 for a thorough

list of HRV metrics organized per analysis domain. Non-linear HRV metrics are not considered in this

thesis.

Figure 2.4: Heart rate variability time-domain and frequency-domain measures. Excluding non-linear measures.
Adapted from (Shaffer, 2017).

Regarding time-domain measures, the most common used are standard deviation of NN Intervals

(SDNN) and root means successive square difference (rMSSD) [49]. They correspond to short-term

HRV changes and are not dependent on day/night variations [45]. These are the time-domain measures

considered in this thesis.

Regarding frequency-domain measures. They can be expressed in absolute or relative power. Ab-

solute power is calculated as ms2 divided by cycles per second (ms2/Hz). Relative power is estimated

as the percentage of total HRV power or in normal units (nu) - it divides the absolute power for a specific

frequency band by the summed absolute power of the LF and HF bands. [48] Relative power allows

direct comparison between two patients, despite wide variation in specific band power and total power

among healthy, age-matched individuals [47]. The ULF band (≤0.003 Hz) indexes fluctuations in RR

intervals with a period from 5 min to 24 h and can only be measured using 24 h recordings. In Fig-
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ure 2.5 we can see how long-term HRV spectral estimates look like. The frequencies in a 5-min long

recording can traditionally be divided into other three main bands [50]. The VLF band (0.0033–0.04 Hz)

is comprised of rhythms with periods between 25 and 300 s. The LF band (0.04–0.15 Hz) is composed

of rhythms with periods between 7 and 25 s and is affected by breathing from 3 to 9 bpm. The HF

or respiratory band (0.15–0.40 Hz) is influenced by breathing from 9 to 24 bpm (see respiratory sinus

arrhythmia (RSA)). [45,51] It can be said that LF/HF estimates the ratio between the activity of SNS and

PNS. Total power is the sum of the energy in the ULF, VLF, LF, and HF bands for 24 h and the VLF, LF,

and HF bands for short-term recordings [31].

Figure 2.5: Example of an estimate of power spectral density obtained from the entire 24-hour interval of a Holter
recording. Adapted from (Task Force, 1997).

Here, we do not account for long-term HRV assessment (24h), neither the ULF band in frequency-

domain HRV analysis since we are considering telemedicine consultations, which could last a maximum

of 1 hour. Furthermore, the case considered in this thesis concerns a patient resting in front of a

computer webcam. Figure 2.6 illustrates a short-term HRV spectrum for a subject at rest. To minimize

nonstationarities, 1-min recordings are recommended to assess the HF, while 2-min recordings are

recommended to assess the LF [1].
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Figure 2.6: Example of a short-term estimate of power spectral density obtained from a patient at rest. Adapted
from (Task Force, 1997).

2.1.6 HRV and psychophysiological theory

According to [31], five theories imply HRV in psychophysiological research: the neurovisceral integration

model [52], the polyvagal theory [53], the biological behavioral model [54], the resonance frequency

model [55], and the psychophysiological coherence model [56]. All five theories focus on vagal tone

(parasympathetic modulation). Specifically. In the neurovisceral integration model, it is assumed that

the prefrontal cortex is connected to the heart through the central autonomic network and vagus nerve

and that higher vagal tone is correlated with better emotional and health regulation and also better

executive cognitive performance [52, 57]. In polyvagal theory, the vagus complex functions as a brake,

as it continuously inhibits the influence of SNS on HR (also reduces the stress response), allowing

states of calmness necessary for social behavior. Here, a higher vagal tone is associated to better

social functioning. [53], In the biological behavioral model, vagal tone plays a role in regulation of energy

exchange by synchronizing respiratory and cardiovascular processes following metabolic and behavioral

dynamics. In this model, a higher resting vagal tone means higher adaptability, as this is conceived as

a functional energy reserve capacity from which the organism can draw during more active states [54].

In [55], authors suggest that slow paced breathing at the resonance frequency increases vagal tone.

Similarly, in the psychophysiological coherence model, a higher vagal tone can be achieved through

slow paced breathing [6].
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2.1.7 Applications of heart rate variability to depression

In the past, whether HRV could be used as a biomarker for depression was unclear, with research

showing mixed findings [58]. While some authors have reported depressed patients to have lower levels

of HRV than controls [59,60], others reported no differences [61–63].

Recent meta-analysis seem to agree that HRV measures correlate with depression to some extent

and attribute past mixed results to heterogeneity in relatively small samples, medication confounds and

reporting of different HRV measures. In [64], from 13 cross-sectional studies, a small reduction of HRV

in depression is reported, though only HF power and RMSSD measures were considered. It should

be noted that RMSSD estimates contain a contribution of lower frequency (< 0.15Hz), capturing a

mix of sympathetic and vagal (parasympathetic) influences [65]. Later, [66] finds compelling evidence to

believe that HRV reductions are inversely correlated with depression severity, from a meta-analysis of 18

studies with patients with no cardiovascular complications. Drawing from 6 studies based on children and

adolescents, [67] concluded that adolescents who met clinical criteria for depressive disorders exhibited

lower resting state HF, which is consistent with research among adults. However, the authors found no

no correlation between HF and depressive symptom severity, but were limited to non-clinical samples

only. Recently, from 21 studies, [68] comprehensively analyses effect sizes for seven distinct resting-

state HRV measures, namely HF, LF, VLF, LF/HF, RMSSD, SDNN and RR intervals. Results suggest

that patients with depression are likely to display small reductions in HF, LF, VLF, RMSSD (largest effect

size), SDNN and RR intervals and an increase in LF/HF ratio. They conclude that depressive states are

not associated with alteration in specific indicators of HRV, but rather with abnormalities in several time-

and frequency-domain measures. Moreover, this meta-analysis only considered unmedicated patients,

demonstrating that reductions in HRV are prevalent in depressed patients without antidepressants.

In [69], authors found correlation between 15-min ECG-based HRV measures and clinical state of

depression. Using 62 depressed patients and 65 non-depressed controls and testing several HRV

measures, they have seen a decreased HF%, amongs others, to be highly correlated with a diagnostic

of depression. Unfortunately, in this study, RMSSD is not properly acessed.
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2.2 Photoplethysmography

This section is divided in two parts: first we introduce the principles behind the PPG technique (2.2.1)

and, secondly, we review the relationships and differences between HRV and PRV (2.2.2).

2.2.1 Photoplethysmography principles

For each heart beat, blood is pumped through the circulatory system, from the heart to peripheral tis-

sues, causing a displacement in volume along the way. PPG can be used to detect this pulsatile be-

haviour [70,71]. Hertzman first introduced the term “photoplethysmography” (”photo” from photon, which

is the basis of the optical data analyzed + “plethysmo”, Greek for “enlargement”, referring to the changes

in the dermal vasculature) [72]. This technique requires only a light source to illuminate the tissue and

a photodetector to measure the sum total of volume changes in any and all blood vessels (e.g., large

and small arteries, arterioles, venules, and veins) [73]. The photoplethysmogram is both non-invasive

and similar to an arterial blood pressure waveform - which is obtained through an invasive technique.

Because of this, the extraction of circulatory data from the photoplethysmogram has been a popular

subject of contemporary research. [74]

Although the interaction of light with biological tissue is complex and includes the optical processes

of scattering, absorption, reflection, transmission and fluorescence, in general, the greater the blood

volume the more the light source is attenuated [75]. Given that, there are two main PPG configurations

[76]: 1) in the transmission mode, a tissue sample is placed between the light source and the photo

detector, and thus, the measurement site may be limited to tissues where transmitted light can be readily

detected (e.g. fingertips, earlobes) [77], while 2) in the refection mode, the source and detector are

placed side by side, which enables measurements from virtually any point on the skin surface. For a

review on optical sensor technology for PPG, see [78]. It matters to add that compared to red/infra red

light, green light has greater absorptivity for both oxyhemoglobin and deoxyhaemoglobin, resulting in a

better Signal-to-Noise Ratio (SNR) for PPG [79–81].

PPG has many biomedical applications, including: (a) clinical physiological monitoring (blood oxy-

gen saturation, HR, blood pressure, cardiac output and respiration); (b) vascular assessment (arterial

disease, arterial compliance and ageing, endothelial function, venous assessment, vasospastic condi-

tions, microvascular blood flowand tissue viability), and (c) autonomic function (vasomotor function and

thermoregulation, HRV, orthostatic intolerance and neurology). See [73].

Two limitations associated with PPG are: (a) contact measurement, which means the sensor must

be attached firmly to the skin, causing discomfort and impairing movement (e.g. sports) and (b) spot

measurement, which means that traditional PPG can only extract pulse from one skin site per probe

(more probes mean more restriction and discomfort) [76].
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2.2.2 HRV vs. PRV

In contrast to the QRS-complex, a pulse wave can be subdivided only into two parts [15]. See Figure 2.7.

In the anacrotic phase, the pulse rises due to systole-induced blood pressure increase. In the catacrotic

phase, which is more prolonged than the anacrotic phase, there is a subsequent decline corresponding

to cardiac diastole (it also can contain a secondary peak, called the dicrotic notch, due the closure of

the aortic valve [82]). There is some inconclusiveness to the question whether PRV is a substitute for

HRV. For each RR interval extracted from the ECG, there is an interval comprising a full pulse cycle

length in the PPG, which we call PP interval (see 2.7). Depending on pulse wave velocity and vascular

path from the heart to the PPG sensor location, there is a delay between each R peak and the onset of

its corresponding pulse wave: this delay is termed Pulse transit time (PPT) and is negatively correlated

with blood pressure, arterial stiffness, and age [83]. Deviations between RR intervals and PP intervals

can arise in two ways [41]: 1) artifacts and/or noise, or 2) physiological variability in PPT. Furthermore,

it has been observed that correlation between PRV and HRV frequency domain variables deteriorates

with diminishing sampling rate (noticeably when below 100 Hz). [84].

The difference in name is not simply a matter of signal source (ECG or PPG), but a matter of cardio-

vascular physiology [85].

Figure 2.7: Electrocardiogram and a pulse wave signal, illustrating the meaning of RR interval (RRI), pulse transit
time (PTT), and pulse interval (PPI). Adapted from (Schäfer, 2013).

Recently, some authors have proposed PRV to be an independent biomarker arguing that, although

HRV strongly modulates PRV, PRV is further modulated by many other different sources and factors,

which could contain useful biomedical information that is neither error nor noise [16]. See Figure 2.8.
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Figure 2.8: Factors affecting the information transmission from electrocardiogram R wave to photoplethysmography
pulse wave. Adapted from (Yuda, 2020).

2.3 Pulse rate variability applications in mental health

When applied to psychiatry and psychology, pulse rate variability research targets topics like stress

(2.3.1), emotion (2.3.2), among others (2.3.3).

2.3.1 Stress

As early as 2011, [86] suggests that PRV could technically be used as a surrogate of HRV for the purpose

of mental stress assessment, although the authors do not test performance with stress levels reported by

subjects. More recently, using an elastic net linear regression model, [87] showed correlation between

self-reported stress levels and PRV features including SDNN, RMSSD, LF/HF ratio, among others. In

this case, the study design proposes to test different groups of people at different experimental stages

to arrive to a more robust result. Also in 2018, [88] reported 85.35% accuracy predicting the stress levels

reported from subjects during a given moment of the day. For that, it was requested from subjects that

they acquire 30-second PPG records three times every day and respective self-reported stress level.

These were also learned with a linear regression model.

2.3.2 Emotion

In 2016, [89] reported correlation between video-elicited emotions (happy, fear, sad, angry, surprise,

disgust) and both HRV via ECG) and PRV (via finger PPG) features, such as mean RR interval. The
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authors suggest, for example, that sad emotion are associated with higher mean of heart rate activ-

ity, i.e., smaller mean of RR intervals. In another instance, also using an emotion excitation videos

database, [90] accomplishes 60% accuracy classifying three emotions (disgust, anger and happiness)

with a support vector machine modelling SDNN, RMSSD, HF and TINN. Very recently, [91] showed that

a different PRV pattern appears when a subject gets angry while playing a video game. Specifically, the

authors suggest that anger is associated with a higher pulse rate, given a certain baseline.

2.3.3 Other topics

One group reported PRV time-domain features to be particularly low for subjects with a psychosis diag-

nostic, when compared to depressive and healthy controls [92]. In particular, both SDNN and RMSSD

where lower for psychotic patients, irrespective of age, body mass index, smoking, and medication.

Differently from previous applications presented before, which used a traditional PPG sensor, in

2020, [93] uses a smartphone camera at the fingertip of the user in order to predict personality based

on PRV features, bringing rPPG and psychology together. The authors suggest that stable, extroverted

subjects have higher In this study, personality is measured through a questionnaire-like tool that subjects

should complete themselves. Somewhere else [94], the same authors have reported that subjects with

higher life satisfaction scores have a higher rMSSD, SDNN, log HF and log LF; that participants who

suffer from depression have lower log HF and log LF (this is probably due to medication) and that

participants who tend to high-anxiety have lower pNN50 and log HF.

20



2.4 Remote photoplethysmography

In 2018, rPPG was reportedly [95] the most popular name for a technique that can also be referred to as

contactless PPG, camera-based PPG or imaging PPG. Its key component is the camera (e.g. low-cost

webcam, mobile phone camera, high-resolution camera), which collects the reflected (or transmitted)

photons from the skin [96], resembling the PPG principle reviewed in section (2.2.1).

In this section, it presented the basic model of skin reflection underlying the rPPG algorithm used

(2.4.1) and a review of the building blocks of a working rPPG sensor (2.4.2).

2.4.1 Skin reflection model

Although two theories exist to explain the pulsating character of the remote PPG signal, namely blood

volume effects [97] and ballistocardiographic effects [98,99], in this thesis we consider only blood volume

effects. For that, we introduce a generalized skin reflection model proposed by [20] from which rPPG

algorithms can be derived.

Figure 2.9: Specular and diffuse reflections considered in remote photoplethysmography model. Adapted from
(Wang, 2017).

The model considers that there is some light source illuminating a piece of skin tissue, which is being

recorded by a remote color camera. See Figure 2.9. Furthermore, the light source has a constant

spectral composition with varying intensity and the intensity recorded at the camera depends on the

distances between light source, skin and camera. According to the diachromatic model, the following

time varying function defines the reflection of skin pixel k, at time t:
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Ck(t) = I(t) · (vs(t) + vd(t)) + vn(t) (2.1)

where Ck(t) denotes the RGB channels (in column); I(t) denotes the luminance intensity level, which

absorbs the intensity changes due to the light source as well as to the distance changes between light

source, skin tissue and camera; I(t) is modulated by specular reflection vsv and diffuse reflection vd(t);

the last component vn(t) denotes the quantization noise of the camera sensor.

Specular reflection is a mirror-like light reflection from the skin surface with no pulsatile information

and we can assume that its spectral composition is similar to the light source:

vs(t) = us · (s0 + s(t)) (2.2)

where us denotes the unit color vector of the light spectrum and s0, s(t) denote the stationary and varying

parts of specular reflection.

Diffuse reflection is associated with absorption and scattering of light in skin tissue, where the com-

bination of hemoglobin and melanin lead to a specific chromaticity:

vd(t) = ud · d0 + up · p(t) (2.3)

where ud denotes the skin’s unit color vector, d0 denotes the stationary reflection strength, up denotes

the relative pulsatile strengths in RGB channels and p(t) denotes the desired pulse signal.

With (2.2) and (2.3), (2.1) becomes

Ck(t) = I(t) · (us · (s0 + s(t)) + ud · d0 + up · p(t)) + vn(t) (2.4)

Finally, if we combine the stationary parts of specular and diffuse reflection into one:

uc · c0 = us · s0 + ud · d0 (2.5)

(2.4) becomes:

Ck(t) = I(t) · (1 + i(t)) · (uc · c0 + us · s(t) + up · p(t)) + vn(t) (2.6)

where I(t) is expressed as the combination of stationary and time varying part and i(t), s(t), p(t) are

zero-mean signals.

In terms of (2.6), we can define the problem of rPPG as extracting p(t) from observations Ck(t).
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2.4.2 Remote photoplethysmography building blocks

According to [96], the rPPG method can be thought of five steps: recording, image processing, color

channel combination, signal processing and analysis.

Recording

The first step involved in remote PPG is to acquire a sequence of video frames capturing human skin

tissue (e.g. in a webcam call, skin from the human face is available to perform rPPG). See Figure 2.10.

Figure 2.10: Typical setup of a remote photoplethysmography application. Adapted from (Rouast).

Most rPPG research focus on low-cost, consumer-grade, RGB video recorders like webcams, with

video resolutions of 640 × 480 pixels, sampling frequencies of 30 fps or below and handles videos which

are stored offline in an uncompressed format [96]. It was suggested that physiological information can be

extracted despite compression, though the signal quality is degraded [100]. Recordings are commonly

made under laboratory conditions with the subject at rest (or during predefined movements) [95, 96].

Most researchers make use of a single camera, although using multiple cameras can be an advantage

in the case of subject motion [101, 102]. Although homogeneous illumination should be the optimal

type of illumination for the rPPG technique [103], most works focus on artificial light, ambient light or

a combination of both. It is also known that polarized illumination and polarization filters can help to

reduce artifacts [104,105].
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Image processing

Once we have a sequence of video frames containing skin, Region of interest (ROI) selection must

be performed in order to segment skin pixels from non-skin pixels. In this thesis, only rPPG algorithms

based on the human face will be considered, as most works use the subject’s face as general ROI. Viola-

Jones face detector [106] is a common choice for this. After analysing the spatial distribution of the rPPG

signal in the human face, authors showed that the forehead and cheeks provide best results in terms of

SNR [107–110]. To go from detected face to segmented skin is a challenge for rPPG. Facial landmarks

algorithms are an attractive solution to provide detailed ROI borders and are the solution considered in

this thesis. Active appearance model is a statistical model of the human face in which appearance is

matched to a given video frame, resulting in a set of coordinates of known facial landmarks [111], which

are further exploited to create detailed segmentation of the facial skin. Other approaches similar to this

can be found in [108,112,113]. An alternative to face detection is applying a skin detection algorithm di-

rectly at each video frame [114], though the authors have admitted this method to underperform in cases

that there are non-skin regions in the frame which are of similar color to facial skin. A straightforward

method to achieve ROI tracking is to simply re-detect the ROI for every frame [95]. Finally, after knowing

the coordinates of all skin pixels in some frame, we can extract the raw color signal. This is generally

achieved through spatial pooling, which consists in averaging the respective color channel of all pixels

contained in the skin ROI of the frame [95]. This approach is known to dilute single-pixel camera noise

and is the raw signal extraction method considered in this thesis.

Color channel combination

This step of rPPG aims at transforming the raw color signal extracted previously into a BVP signal that

can be further processed to extract measures of interest. This is the second step. Both using the green

channel alone or using a combination of the three color signals is common among rPPG work. Here,

we consider a combination of color channels. There are two main approaches to combine the three

RGB color channels [95, 96]: 1) knowledge-based approaches, which use a priori knowledge about

how the pulse is pronounced in different color spaces and projection spaces and 2) source separation

approaches, which typically use a blind source separation algorithm. In this thesis, we only consider

knowledge-based approaches. The chrominance-based method is the most popular knowledge-based

approach for BVP extraction. In [19], the authors introduce the first popular chrominance-based method,

which uses an empirical weighted combination of R, G, and B channels to yield BVP. The authors

of [115, 116] used the u* channel of International Commission on Illumination (CIE) L*u*v* color space

as the input signal. Elsewhere it was used chromaticity from the CIE L*a*b* color space [117]. The ap-

proach considered in this thesis, called Plane-Orthogonal-to-Skin (POS) method, was proposed by [20].

Simply put, this method first projects RGB channels into the plane orthogonal to skin tone, resulting in
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two novel channels, which are then fused by weighting to the desired signal, yielding the one-dimensional

BVP signal.

Signal processing

At this stage, the noisy extracted BVP signal has to be filtered. Bandpass filters that cover the expected

normal values of heart rate, 0.7 − 4Hz, are the popular choice for filtering (e.g. [113, 118, 119]). Other

techniques include: amplitude selective filter [120], continuous wavelet transform filter [115,121], adap-

tive filter via CWT [122] or fourier transform [123], emprical mode decomposition [124] and even the

Kalman filter [125]. PRV pipelines which aim at beat detection should carefully define the bandpass

filter, as PRV analysis suffer from the loss of morphology and temporal information by filtering [126]. In

the thesis, we consider the simple bandpass filter.

Analysis

The last step in the rPPG pipeline is to conduct analysis on the extracted BVP signal, which can include

estimation of PR, PRV, pulse transit time, pulse wave velocity, oxygen saturation and assessment of

vascular state [96]. In this thesis we consider PR and PRV.

Two popular methods for estimating PR from the BVP signal are [95]: 1) frequency analysis and 2)

peak detection. Frequency-analysis methods include fast fourier transform [127–129], the most popu-

lar, discrete cosine transform (DCT) [130, 131], Welch’s method [112, 132], short-time fourier transform

(STFT) [133] and autoregressive models [134–136], among others. On the other hand, peak detection

methods allow not only for PR estimation (inverting the mean of PP intervals from a certain period yields)

but also for PRV analysis. In this thesis we consider peak detection.
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The proposed method takes as input a timestamped stream of video, i.e. a sequence of tuples of the

form (frame[i], timestamp[i]), where i is the counter of video frames captured, i = 1, 2, 3, ..., frame[i]

is a (width, height, 3) matrix storing each pixel’s RGB intensities and timestamp[i] is the time at which

the corresponding frame[i] was captured. It is assumed that all frames of the video contain a face. We

can see a scheme of the full method in Figure 3.1.

Figure 3.1: Proposed remote photoplethysmography pipeline to extract pulse rate variability in real time.

First, for every video frame, frame[i], an average of the RGB channels over a predicted facial skin

ROI, avg rgb[i], is produced. This can be accomplished with face detection (3.1), facial landmarks

prediction (3.2), ROI selection (3.3) and RGB signal extraction (3.4). Apart from the initialization of the

face and landmarks detection algorithms, no additional memory is needed for these steps.
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Secondly, we must estimate a BVP signal, bvp[t], from the collected raw RGB signal, avg rgb[i].

Since following algorithms assume that samples are evenly distributed in time, we must first resample

the asynchronous raw RGB signal (3.5). After that, we apply the POS method to transform the skin RGB

signal into a BVP signal (3.6). A bandpass filter is further applied to clean the signal for peak detection.

Here, array memory is allocated in advance to store the resampled RGB signal, the POS method signal

and the filtered BVP signal.

Lastly, PR and its variability are estimated via the filtered BVP signal. Peak detection is firstly applied

to the BVP signal in order to detect true heartbeats and, from the peaks, we can compute PP intervals

(3.7). From the PP intervals, we can provide estimations of PR and time-domain measures of PRV (3.8).

Memory is needed to store detected peaks and PP intervals.

3.1 Face detection

For face detection, dlib machine learning library is used [137]. According to dlib’s example documenta-

tion1, the face detector is composed of an Histogram of Oriented Gradients, a linear classifier, an image

pyramid, and a sliding window detection scheme. This process outputs a rectangle for each detected

face in the form (xul, yul, width, hight), where the subscript ul refers to the upper left corner of the rect-

angle enclosing the detected face. See Figure 3.2. Here, we assume that only one face is detected and

that, for each frame, only one rectangle is output, rect[i]. Note that, to process and extract PRV from n

faces would require n times the computational power it takes for one (apart from the face detection task

which is common to all faces).

Input: frame[i]

Output: rect[i]

3.2 Facial landmarks prediction

dlib was also used for facial landmarks prediction [137]. It implements an Ensemble of Regression Trees

method proposed by [138]. Here, we use a pre-trained model file2 made available by dlib, which was

trained on the dataset created by [139]. It receives as input a frame and a rectangle corresponding to

the detected face area and outputs shape[i], which, in this case, is a 68-point list containing the pixel

coordinates of the 68 facial landmarks modeled by this machine learning instance. In Figure 3.3 we

can visualize the landmark detection and also that some of the fiducial points land outside the face, at

non-skin regions.

Input: frame[i], rect[i]
1http://dlib.net/face_landmark_detection_ex.cpp.html, visited September 21, 2021
2http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2, visited September 21, 2021
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Figure 3.2: Example of face detection.

Output: shape[i]

Figure 3.3: Dlib’s 68-point facial landmark detection.

3.3 ROI selection

In essence, selecting the ROI consists in, based on the predicted facial landmarks, drawing contours

for relevant facial regions and make a decision on which combination of regions should be the target of

analysis. Here, the regions comprising the cheeks, the nose and the forehead are considered, while the

regions for beard and eyes are removed. Because the 68-point shape model doesn’t predict the forehead

contour, four forehead points are estimated from the position of the nose and eyebrows. Selection of ROI

is ultimately a crucial step for PRV analysis, as noise introduced by sampling non-skin areas strongly
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damage the very fine rPPG signal. Since estimated landmarks on the boundary between skin and non-

skin areas may land at non-skin areas, even more when the subject moves, a correction is made by

modifying x or y coordinates of landmarks. This corrective approach towards dlib’s facial prediction has

been done elsewhere [140] and can be visualized in Figure 3.4. The output, mask[i], consists of a

(width, height) binary matrix (i.e. it only contains zeros or ones), with ones where there should be skin

and zeros where it shouldn’t.

Figure 3.4: Lower head region of interest selection. (a) 68 dlib landmarks. (b) Landmark correction (seen as red).
Adapted from (Ryu, 2021).

In the end, after removing the ocular regions and accounting for landmark position correction, we

have the skin mask ready, as seen in Figure 3.5. Note that ROI tracking is implicitly done so, as ROI

positions are predicted anew based on facial landmarks detected for the current frame (not previous

frames). In the case a face is not detected, the last ROI position is used until a face is recognized again.

Input: shape[i]

Output: mask[i]

Figure 3.5: Selected region of interest comprising cheeks, forehead, nose and excluding ocular regions.
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3.4 RGB signal extraction

Finally, the mask is applied to the frame via a bitwise operation, creatingmasked frame[i], which is black

background plus segmented skin when displayed. avg rgb[i] is a (3, 1) vector containing the average red,

green and blue intesities over the ROI, (r̄, ḡ, b̄). The value of avg rgb[i] is computed as the sum of RGB

intensities of masked frame[i] across width and height dividing by the sum of mask[i] (the number of

skin pixels). Figure 3.6 shows how, for each frame, there are three values being stored: one red average,

one green average and one blue average. Displaying the masked frame is useful for debugging the raw

signal extraction section.

Input: frame[i],mask[i]

Output: avg rgb[i]

Figure 3.6: Example of average intensity per color channel, across frames.

3.5 Resampling

Within this real-time context (processing live video coming from your own webcam), it can be assumed

that the video signal is asynchronous (i.e. sampled video frames are not evenly spaced in the time

domain). Among many, one reason for this can be that the whole pipeline (including the video capture)

is being executed from a single computer thread: for each new video frame, a varying different amount

of time is needed to process it (and only after that will the video capture grab the next video sample),

creating an irregular sampling pattern in time. In this sense, an online pipeline requires an additional

resampling step to produce an evenly spaced signal for next stages, as common signal processing

methods assume a fixed sampling rate on their signals. For resampling, linear interpolation is used.

Within this scheme, each pair of consecutive frames generates evenly spaced points, according to

a working sampling frequency, fs. Note that the first frame captured (i=1) is seen as the pipeline’s

beginning of time. Thus, resampling is only performed for i > 1.

33



3.6 BVP signal extraction

To extract a one-dimensional BVP signal from a three-dimensional RGB signal we need a color com-

bination algorithm, reviewed in (2.4.2). Here we use the POS method [20]. The POS method can be

found in the chrominance category of rPPG algorithms, which means this algorithm integrates skin tone

knowledge a priori, i.e. it requires less knowledge of the BVP signature and is more tolerant to distortion.

Specifically, for a single light source (e.g., the fluorescent lamp), the skin pulsatility is the largest in the

green-channel, followed by the blue-channel and red-channel. Given that, the authors suggest the first

step to reduce dimensionality should be generating two signals, S1 and S2, from multiplying projection

matrix P with RGB signal. Algebraically, green is accounted more than the blue and the red, and blue is

accounted more than the red:

S1 (t) = Green(t) − Blue(t) (3.1)

S2 (t) = Green(t) + Blue(t) − 2 × Red(t) (3.2)

P =

[
0 1 −1
−2 1 1

]
(3.3)

After that, alpha-tuning, introduced by [19], is used to arrive at the BVP:

h(t) = S1 (t) + α× S2 (t), where α =
σ(S1 )

σ(S2 )
(3.4)

This step uses knowledge of the BVP to define a rough projection region on the plane orthogonal to the

temporally normalized skin-tone direction, and refine an exact projection direction on the plane by real-

time tuning. The POS method is a sliding window algorithm. Its window size, POSl = fs · POSs, was

chosen to correspond to POSs = 1.6 seconds, which encapsulates one cardiac cycle as recommended

by the authors. This choice introduces only a 1.6 seconds delay from acquiring the frame to extracting

the corresponding facial blood volume, which is short enough for real-time applications.

Furthermore, filtering the raw BVP is essential, since it is easier to find true pulse peaks if the BVP is

clean. Filtering is implemented using SciPy library [141]. A second-order infinite impulse response (IIR)

bandpass butterworth filter, [0.8, 2.5] Hz, was chosen since these frequencies correspond to a human

heart rate range of 48 to 150 bpm. See Figure 3.7 for the BVP signal and respective filtering.

3.7 Peak detection

For peak detection, we use the mountaineer’s method [142], which was proposed to handle PPG signals

regardless of their amplitude. The authors consider that every PPG pulse can be seen as a single
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Figure 3.7: Blood volume pulse signal extraction via POS method (upper panel) and respective filtering (lower
panel).

mountain, and thus the systolic peak can be thought as the top of the mountain. Their main assumption

is that the rising edge preceding the systolic peak is a strictly increasing function and that the peak is

reached when the slope changes from positive to negative, the same way a mountaineer would know

that he is at the top of the mountain when, after a long time of walking up, he starts walking down.

Simply put, the algorithm tracks how many steps it takes to observe changes in the slope of the signal

and, like that, is able to detect both peaks and valleys in the mountain-like signal. Furthermore, the

method is built so to ignore ripples that do not correspond to neither peaks or valleys, in the sense that

if a mountaineer is going down a mountain but has to briefly climb up only to go down again, he can say

that he has neither reached a peak or a valley. From the digital signal processing point of view, this is

point-by-point, windowless algorithm, which is very convenient for a real-time application.

To further select true heartbeats from noise or motion artifact induced peaks, a simple refereeing

algorithm is proposed after the mountaineer peak detection method. Its purpose is to, based on a

previous PR estimate, iteratively predict where the next heartbeat should be, based on the current one.

To achieve that, the referee first needs an outside mechanism that provides him with an estimate of PR.

In this case, PR is being computed recurrently using non-overlapping 6-seconds portions the BVP signal

via autoregressive modelling [143], with model order 12. Based on the current PR estimate and current

peak time, he produces a time window where he will go look for the next peak. The window time limits

of the referee, RWmin and RWmax, are set as follows:

PPestimate =
1

HRestimate

60

(3.5)
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next peak estimate = PPestimate + last peak time (3.6)

half width =
PPestimate

2
(3.7)

RWmin = next peak time + half width (3.8)

RWmax = next peak time − half width (3.9)

If the mountaineer method only detects one peak within the referee window, that peak is immediately

marked as a true peak by the referee. If two or more mountaineer method peaks fall within the referee

window, the referee marks as true peak the one closest to the center of the window. If no peak was

detected by the mountaineer method within the referee window, the referee adds a beat in the center of

the window proceeds from there. In Figure 3.8 we can see an example of the proposed peak detection

scheme.

Figure 3.8: Example of proposed real-time peak detection. The red points correspond to peaks detected by the
mountaineer method. The yellow points correspond to the peaks marked by the referee. In this case,
because there is little distortion to the signal, the mountaineer method does very well and the referee
simply marks all mountain peaks detected.

From the detected peaks, we extract PP intervals as the difference between pairs of consecutive

peaks.

PPintervali = IBIi = PeakTimei − PeakTimei−1 (3.10)

In Figure 3.9 we can see the aspect of a PP signal, where each step represents the time, in millisec-

onds, between successive pairs of pulses.
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Figure 3.9: The PP signal corresponding to the blood volume pulse signal displayed in Figure 3.8.

3.8 HR and PRV estimates

Finally, we produce the biomedical statistics and features that describe a given BVP instance, with a

specific collection of PP intervals.

Heart rate is calculated by averaging PP intervals over a time window, and computing the inverse of

it:

HRw =
1

PPw
(3.11)

where PPw is the mean of all PP intervals that fall within the time window w. Assuming PP data is in

seconds, this yields PR in Hertz; multiplying by 60 gives PR in beats-per-minute (bpm). The choice of

this time window should reflect the user’s requirement (e.g., instantaneous PR, long-term PR).

Two time-domain HRV metrics are considered: SDNN and RMSSD. For a given time window with N

PP intervals, the formulas are as follows.

SDNN =

√√√√ 1

N
×

N∑
1

(PPi − PP )2 (3.12)

RMSSD =

√√√√ 1

N − 1
×

N−1∑
1

(PPi+1 − PPi)2 (3.13)

We also consider three frequency-domain metrics: normalized LF power, normalized HF power and

LF/HF ratio. While Fourier methods [144] and auto-regressive models [143] are popular means of ob-

taining frequency domain features from the RR signal, they require a PP signal explicitly. According

to [145], when dealing with time series with irregular sampling period (i.e. the time between two heart

rate samples is dependent of the RR interval duration), it is recommended to use the Lomb-Scargle

method. In this case, we don’t need to have an explicit PP signal, which makes the method suited for

real time applications [146]. In Figure 3.10 we can see the Fourier like spectrogram the Lomb-Scargle

method yields.

To compute all PRV metrics efficiently, we use the hrv-analysis python library [147]. In the end we

should have several PR and PRV readings, like we see in Figure 3.11
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Figure 3.10: An example of a pulse rate variability spectrogram obtained through the Lomb-Scargle method. This
spectragrom was created with the python library hrv-analysis.

Figure 3.11: The output of the algorithm. In the top left corner, we can see both pulse rate (long-term PR and
last-5-PP PR) and pulse rate variability (SDNN, RMSSD, LF, HF and LF/HF) readings.
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4.1 Offline testing

The proposed method was tested with the UBFC-RPPG video dataset, introduced in [148]. This dataset

is composed of 40 videos and respective PPG ground truth, gathered from a pulse oximeter finger clip

sensor. Each video lasts more than one minute and is recorded with a low cost webcam at 30 fps with

a resolution of 640×480 in uncompressed 8-bits RGB format. In these videos, the subjects sit in front of

the camera, about one-meter away, and they play a time sensitive mathematical game that supposedly

raises the heart rate. This setting shouldn’t be too different from that of a medical consultation via

webcam, apart from the fact that the videos in this dataset contain very little subject movement and have

nice, constant lighting.

Table 4.1 reports the performance of the proposed method for every subject of the UBFC dataset in

terms of mean absolute error between estimated and ground truth PR and PRV features. The normalized

HF error is not displayed as it is the same as LF.

In videos for which the skin mask is noisy, i.e. facial landmarks positions vary drastically even when

there is no facial movement, non skin pixels (e.g. wall behind the subject) are sampled and fed into the

rPPG algorithm introducing distortions in the BVP signal estimation. When distortions are as large as the

BVP signal, AR model referee estimation of PR fails and the proposed peak detection scheme collapses.

Even though the proposed algorithm shrinks the skin mask to avoid pixels close to the edge of the face,

there are extreme cases for which landmark estimates are still too noisy. A very pronounced case of

noisy mask is that of subject 41, illustrated in Figure 4.1, for which the proposed method performs the

poorest. As can bee seen, the landmark prediction fails and the corrections can not exclude the non-skin

pixels. This result underlies that selecting skin-only pixels is essential for any rPPG algorithm.

Figure 4.1: Twelve consecutive frames showing skin mask noise, seen here as a blue wall behind the subject.
Because the wall pixels can enter and leave the ROI very fast, noisy fluctuations appear in the RGB
color signals, which are uncorrelated with blood volume changes in facial vasculature.

Color of skin does not seem to have an impact in the performance of the proposed method, as

the average of performance for dark tone is similar to light tone. However, there are only two colored
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Table 4.1: Mean absolute error between ground truth and estimated pulse rate and pulse rate variability features,
per subject. Columns are marked with asterisks according to the length of the analysis window used: *
for 15-second window, ** for 30-second window, *** for full record.

Subject PR* (bpm) PR** (bpm) PR*** (bpm) SDNN (ms) RMSSD (ms) LF (nu) LF/HF
1 4,1987 3,623055 0,643013 9,133175 14,6971503 9,3313 0,298607
3 2,348539 1,794518 0,553611 8,444861 34,5389541 16,00381 7,642862
4 5,564646 4,251566 6,65146 15,65751 57,393792 4,257184 0,128137
5 1,844587 1,130269 0,921357 15,32402 33,4517674 2,035155 0,032921
8 0,977157 0,838798 0,010891 8,082792 20,3019335 15,21441 0,555628
9 2,969618 1,783416 1,152776 29,3187 45,1347266 32,01188 1,110442
10 0,699623 0,400299 0,567125 6,563537 20,1280719 6,491911 0,287745
11 1,644524 1,036419 0,764924 14,3369 31,0958797 38,89513 2,433866
12 2,683789 2,047038 0,93426 29,25841 44,386202 13,55559 0,26086
13 1,448835 1,327466 0,444564 6,215349 20,8335278 6,970089 0,650175
14 1,205541 1,252071 0,694287 17,47662 63,9381263 20,49469 1,926514
15 6,270456 4,429778 9,782752 1,252001 5,78305055 1,601859 0,034329
16 1,882559 1,639633 0,752636 22,86777 56,247141 15,33861 0,519647
17 1,741078 1,473016 0,241781 15,764 35,6330882 36,36467 1,807558
18 3,357007 2,395363 0,178454 8,955568 16,6111996 17,79268 0,737141
20 1,812351 1,333211 3,854949 26,44222 53,5964425 46,57441 2,712767
22 2,673689 3,1702 0,804041 42,54923 76,2418712 15,89661 0,987123
23 2,908396 3,264732 1,900757 37,88024 60,74649 0,921517 0,037022
24 4,711815 4,720487 1,693969 40,52374 81,9078375 8,998069 0,277155
25 4,653725 3,949907 1,20052 5,323105 18,8029615 22,76256 0,454462
26 1,879532 1,593659 0,223179 21,13367 39,7181849 38,66064 1,556223
27 2,139063 2,20538 2,832174 24,74535 54,8340479 26,53145 3,420723
30 0,688636 0,473665 0,475013 13,37812 35,8015257 29,87593 2,009246
31 0,868949 0,508398 0,365321 9,925167 11,6108863 0,891866 0,020663
32 0,480838 0,523094 0,178176 21,87427 37,6920232 1,58746 0,044037
33 4,790463 5,700498 1,931864 20,28369 28,2869167 15,73327 0,374927
34 1,403921 1,353179 0,521882 13,35422 28,0767238 10,98356 0,553321
35 1,454661 1,714099 0,286558 1,750292 17,8626879 4,271267 0,537495
36 2,175227 2,032103 0,143852 5,62433 14,2635718 13,73998 2,981935
37 1,089043 1,340806 0,381518 2,855368 31,7900006 9,441993 0,362368
38 2,003767 1,542528 2,372209 61,72839 110,799441 41,00793 1,232811
39 0,525357 0,316026 0,027358 11,54208 16,5909121 19,24709 1,743222
40 2,320192 2,181635 0,664368 40,56172 60,0036794 17,40573 0,614505
41 8,659682 8,080893 3,284753 103,5145 70,8345917 0,753694 0,031585
42 0,568467 0,570574 0,14595 3,090669 0,63690635 2,730146 0,347615
43 2,343259 1,293915 0,46283 25,64717 44,2027604 21,53345 0,644212
44 1,390667 1,378657 0,422157 23,13219 46,0356676 26,45901 1,27013
45 1,388663 1,446941 0,229227 6,221288 14,5452721 5,825947 0,75367
46 4,764737 5,337647 0,384027 18,28357 42,1611379 21,59623 0,71285
47 1,490869 1,116672 2,580767 28,39756 71,0768062 35,71173 1,523752
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subjects within the dataset, which is a very small statistical sample to make meaningful claims.

Hair in front of the forehead or wearing glasses doesn’t seem to lower the performance of the pro-

posed method, even if they are captured by the skin mask. However, these factors can cause abnormal-

ities for the landmark prediction routine (see Figure 4.2).

Figure 4.2: Poor landmark prediction due facial occlusion by hair.

The peak detection referee is introduced to deal with signals with distortions and motion artifacts in

real time. In Figure 4.3 we can see the referee filtering out unwanted, distortion-induced peaks.

Figure 4.3: An example of good functioning of the peak detection refereeing at around 3.5 seconds and 10.5 sec-
onds. The white line represents the blood volume pulse signal extracted from remote photoplethysmog-
raphy. Red points are all detected peaks. Yellow points are the peaks produced by the referee. The
green signal is the ground truth from a finger photoplethysmography sensor. Green points are ground
truth peaks.

When subject motion, illumination changes or mask noise, alone, or together, degrade the signal too

much, the peak detection referee starts to fail badly. Besides that, the referee might also fail in situations

where a big variation in pulse rate takes place and the trailing auto-regressive model guess becomes

useless. In this case, the referee will add abnormal pulses and because it uses the previous beat to
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Table 4.2: Average and standard deviation of the estimation error across UBFC subjects, per feature.

PR* (bpm) PR** (bpm) PR*** (bpm) SDNN (ms) RMSSD (ms) %LF (nu) LF/HF
AVERAGE 2,45 2,16 1,29 20,46 39,21 16,89 1,09
STD 1,75 1,67 1,87 18,6 23,27 12,63 1,35

produce the next one, this might create problems in series. See, for example, Figure 4.4.

Figure 4.4: An example of bad functioning of the referee. In the upper panel we can see the filtered blood volume
pulse (white) against the ground truth photoplethysmography signal (green). In the lower panel we can
see the intervals between estimated peaks (blue) and for ground truth peaks (green). In this case, while
the mountaineer method (points in red in the upper panel) works properly, the referee (points in yellow)
creates problems around 42 seconds. Here, because the subject’s pulse rate starts to slow down
(visible in the green, the ground truth intervals in the lower panel), it no longer matches the previous
pulse rate guess made by the auto-regressive model and the referee fails to include the true peak in
its window. Because the referee doesn’t detect a peak, it adds one in the center of the window and
after that fails again to include the true peak. Finally, it catches up to the true peak detected by the
mountaineer method but this creates a pronounced problem in the estimated RR signal (visible in blue
in the lower panel, around 42.5 second).

Table 4.2 reports on overall performance of the proposed method when testes with the UBFC

dataset, in terms of average error and standard deviation.

Comparing against the state-of-the-art in PR estimation (Table 4.3), the proposed method (mean er-

ror = 2,16 bpm) performs extremely well, competing with the best previous non-supervised or supervised

methods. This result implies that the algorithm performs well for PR measurements in the short-term.

Although PR doesn’t relate directly to PRV and mental complication, this suggests that the webcam

rPPG algorithm should be able to compete with traditional PPG for some applications that need PR

measurement. Besides, mobile applications that make PR measurements by placing the smartphone

camera on the finger are not alone anymore, as we see that the facial video is just as good.

Regarding PR variability estimations, the method performs good when compared to stat-of-the-art

reports (see Table 4.4). Regarding estimating SDNN and RMSS, the method performs worse than the

one proposed by [144], but better than any other. For %LF (nu) and LF/HF estimation, the proposed
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Table 4.3: Performance of state-of-the-art algorithms for pulse rate estimation on the UBFC dataset. Values corre-
spond to the mean absolute error in bpm, either for 30 second windows or full record.

ICA CHROM POS PVM cPR + fine MAICA CK FaceRPPG PulseGAN
6,02 [149] 3,7 [149] 4,73 [149] 4,47 [149] 2,1 [150] 3,43 [151] 2,29 [152] 2,37 [144] 2,09 [153]

Table 4.4: State-of-the-art pulse rate variability estimation performance of in terms of mean absolute error for the
UBFC dataset.

Method FaceRPPG [144] SSF [154] CHROM PulseGAN [153] Proposed method
SDNN (ms) 19 25 38,9 [153] 24,3 20,46
RMSSD (ms) 16 47 93 [154] 39,21
%LF (nu) 20 16,89
LF/HF 1,3 1,09

method outperforms all methods reported.

According to [47], average short-term human HRV features have the following ranges: SDNN ranges

from 32-93 ms; RMSSD ranges from 19-75 ms; %LF (nu) ranges from 30-65 and LF/HF ranges from

1.1-11.6. For SDNN, the proposed method has an average error of around 20 ms, which mean we

should be able to roughly distinguish three profiles within the SDNN human range. Regarding RMSSD,

an average error of 39,21 ms might be too large for biomedical application, since the mean error is

almost as big as the allowed range. As for %LF (nu), an average error of 16% should be little enough to

distinguish at least two types of autonomic profiles. Finally, the average error for LF/HF ratio estimation

is the smallest compared to its respective human range, which suggests that this is the most reliable

feature for biomedical application coming out of the proposed algorithm.

4.2 Live demonstration

For the live demonstration, a standard grade laptop (MSI GF63 8RD) runs the whole rPPG pipeline in

real-time using the embedded webcam as video input in one thread, and, on another thread, it acquires

the traditional PPG signal from a pulse oximeter finger clip sensor, i.e. the ground truth signal. The PPG

acquisition is mediated through a BITalino board [155], which stores the data at a constant rate and

sends it via bluetooth to the laptop. In the end, we can display both signals at the same time and confirm

that the rPPG signal follows the PPG signal closely (see Figure 4.5), though we can see that the two

signals are not perfectly aligned. This delay might be related with: 1) PPG thread starting acquisition

first than the webcam thread, or vice versa and 2) the amount of time blood takes to travel from the

heart to the face is different from the time it takes travelling from the heart to the finger, and their also

target of regulation by the circulatory system control mechanisms. Anyway, we can see that for every

PPG-sensor pulse we can count a corresponding delayed rPPG-sensor pulse, confirming the ability of

the proposed real-time algorithm to capture pulse rate variability, just like traditional PPG can do.
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Figure 4.5: Real-time comparison of the photoplethysmography signal obtained through the finger clip sensor (up-
per panel) and the remote photoplethysmography signal obtained from the webcam video. In this image
we can also see the 1.6 second delay of the remote photoplethysmography algorithm.
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5.1 Conclusions

This paper has tried to show that not only rPPG is a potential tool for biomedical application to the

psychiatric field (and other, like cardiology), but that it can be accomplished in real time to aid doctors in

tele consultation.

Virtually all published work on rPPG is based on offline computations [95]. In the offline context

(e.g. processing a video file from a scientific database), we readily have all the samples at disposal,

which allows separation of processes (e.g. first detect faces for all frames, then extract signal for all

frames, etc). In the real-time context this is not true and each process has to be carefully orchestrated

with adjacent processes to make sure each signal processing method is activated only when it has

available data to proceed. This is particularly important when there are several windowed processes

working in series (e.g. the first method operates with a 1.6 second window, thus the second method,

which might work with a 2 second window, has to wait for that method, and so on and so forth for

following methods). This constraints algorithm choice for the real-time context, which aims for the lowest

possible time window between ’acquiring video samples’ and ’displaying PRV features’. Thus, simple,

low complexity algorithms were preferred over complex ones, in order to get closer to real-time PRV

readings.

Accomplishing real-time pulse rate variability means that we can inspect the raw signal and PRV

features during recording, which allows to identify artifacts, make sense of the values and overall have

control over the precision of the process which is in accordance to recommendations made by [156].

Plus, a real-time rPPG algorithm ensures the doctor has some control over the quality of the measure-

ment. The real-time display not only allows him to search for a sweet spot in terms of patient positioning

and ambient lighting, but also to control overall quality of the record.

The most significant limitation of the proposed algorithm is that its automated peak detection can both

miss and or add beats, which largely distorts PRV features and overall produces misleading results [157].

According to [158], PRV features extracted from any PPG sensor with a sampling frequency above

or equal to 25 Hz should not significantly differ from the HRV features extracted from the ECG, which

has much larger sampling frequencies. For a standard laptop, the proposed algorithm runs at 18 Hz,

which means improvements have to be made in order for it to run above 25 Hz in regular computers.

This work is relevant because telemedicine is an emerging, cheaper form of providing health services

and reliable tools must be developed to support doctors in making decisions within the remote context.

All in all, while the proposed method may be unsuited for very fine diagnostic, i.e be able to separate

patients basted on illness severity, it may still be able to distinguish between extremes (e.g. healthy

patient and severe depression) and this should be promising.
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5.2 Future Work

In the future, it should be tested whether PRV features produced by the algorithm correlate with different

groups of psychiatric patients. For example, testing whether the proposed rPPG algorithm produces

PRV features that are reliable enough to distinguish between healthy patients and patients with severe

depression with the help of classification techniques (e.g. linear regression).

On the other side, investigating physiological mechanisms that underlie the similarities and differ-

ences between finger PPG, rPPG and ECG signals is of importance, as these tools are currently all

available and can mean an advancement for several types of medical diagnostic, alone and together.
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A
Code of Project

.

Listing A.1: Real time webcam PRV via rPPG python code

1 # Imports

2 import cv2

3 import dlib

4 import numpy as np

5 import time

6 import datetime

7 import bisect

8 from scipy import signal

9 from PyQt5 import QtGui

10 import pyqtgraph as pg

11 from spectrum import arma2psd , arcovar
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12 from hrvanalysis import get_time_domain_features ,

get_frequency_domain_features

13

14 import auxiliar_functions

15 import drawing_tools

16

17 # Video input

18 video_capture = cv2.VideoCapture(0)

19 cap_fps = int(video_capture.get(5))

20 frame_width = int(video_capture.get(3))

21 frame_height = int(video_capture.get(4))

22 size = (frame_width , frame_height)

23 frame_count = 0

24

25 # Memory allocation for incoming real time signals

26 max_length_of_recording = 60 # min

27 max_num_of_frames = max_length_of_recording * 60 * cap_fps

28 resampled_color_signal = np.zeros(( max_num_of_frames , 3), dtype=np.float64)

29 resampled_time = np.arange(0, max_length_of_recording * 60, 1 / cap_fps)

30 num_resampled_frames = 0

31 H = np.zeros(( max_num_of_frames ,), dtype=np.float64)

32

33 # Frontal face detector and shape predictor initialization:

34 # Set p as the path to your .dat file shape predictor

35 p = "C:\\ Users\\ pedro constantino \\ Desktop \\ rPPG_python \\ tools\\dlib dat

files \\ shape_predictor_68_face_landmarks.dat"

36 detector = dlib.get_frontal_face_detector ()

37 predictor = dlib.shape_predictor(p)

38 mask = np.zeros (( frame_height , frame_width , 3), dtype=np.uint8) # Define ROI

outterbound

39

40 # POS method initialization

41 window_time = 1.6 # 1.6 s

42 l = int(cap_fps * window_time)

43 last_frame_POS = 0

44

45 # Average color on three channels R, G, B

46 avg_rgb = np.zeros(( max_num_of_frames , 3), dtype=np.float64)
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47 frame_time_stamps = np.zeros (( max_num_of_frames ,), dtype=np.float64)

48 num_of_faces_stamps = np.zeros(( max_num_of_frames ,), dtype=np.float64)

49

50 # Filtration initialization

51 start_freq_bandpass = 0.8 # Hz

52 stop_bandpass_freq = 2.3 # Hz

53 nyquist_freq = cap_fps / 2

54 Bparam , Aparam = signal.iirfilter(2, [start_freq_bandpass/nyquist_freq ,

stop_bandpass_freq/nyquist_freq], btype='band',

55 analog=False , ftype='butter ')

56 Z, P, K = signal.tf2zpk(Bparam , Aparam)

57 sos = signal.zpk2sos(Z, P, K)

58 z = np.zeros((sos.shape[0], 2))

59 iir_filtered_signal = np.zeros(( max_num_of_frames ,), dtype=np.float64)

60

61 # MMPD (Mountaineer 's Method for Peak Detection)

62 mmpd_frame = 1

63 mmpd_num_upsteps = 0

64 mmpd_threshold = 6

65 mmpd_possible_peak = False

66 mmpd_possible_valley = False

67 upstep_possible_peak = 6

68 mmpd_peaks_signal = np.zeros (( max_num_of_frames ,), dtype=np.float64)

69

70 # Referee intervals

71 curr_pp_avg = 0

72 referee_initial_width = 0.3 # seconds

73 referee_half_width_frames = int(( referee_initial_width * cap_fps) / 2)

74 max_pred_loca = 1000000000

75 min_pred_loca = 0

76 referee_boolean = np.zeros (( max_num_of_frames ,))

77 referee_p_peaks = []

78 referee_pp = []

79 referee_num_peaks = 0

80 referee_frame = 0

81

82 # Raw RR interval signal

83 raw_pp_signal = np.zeros(( max_num_of_frames ,), dtype=np.float64)
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84 last_peak_time = 0

85 num_of_raw_pp_added = 0

86

87 # AR model (periodic)

88 ar_window_duration = 6 # s

89 ar_window_length = ar_window_duration * cap_fps

90 ar_frame = 0

91

92 # Estimate heart rate variability

93 # Time -domain

94 td_window_duration = 60 # s

95 td_window_length = int(td_window_duration * cap_fps)

96

97 # Plotting variables

98 qt_plot = QtGui.QApplication ([])

99 win = pg.GraphicsWindow ()

100 pos_plot = win.addPlot(title="POS method data")

101 pos_plot.setLabel('bottom ', 'Time', 's')

102 pos_plot.setLabel('left', 'Pixel intensity ')

103 pos_curve = pos_plot.plot()

104 win.nextRow ()

105 filtered_plot = win.addPlot(title="Filtered POS signal and Peak detection")

106 filtered_plot.setLabel('bottom ', 'Time', 's')

107 filtered_plot.setLabel('left', 'Pixel intensity ')

108 filtered_curve = filtered_plot.plot()

109 estimated_peaks_curve = filtered_plot.plot()

110 referee_peaks_curve = filtered_plot.plot()

111 win.nextRow ()

112 pp_plot = win.addPlot(title="PP signal")

113 pp_plot.setLabel('bottom ', 'Time', 's')

114 pp_plot.setLabel('left', 'Time', 'ms')

115 raw_pp_curve = pp_plot.plot()

116 plot_time_window = 10 # seconds

117 plt_window_size = plot_time_window * cap_fps

118

119 # FPS estimation variables

120 frames = 0

121 cur_fps = 0
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122 last_time = datetime.datetime.now()

123

124 # main loop

125 while frame_count < max_num_of_frames:

126 ret , frame = video_capture.read()

127

128 frame_time_stamps[frame_count] = time.time()

129

130 frames += 1

131

132 # FPS estimation

133 delta_time = datetime.datetime.now() - last_time

134 elapsed_time = delta_time.total_seconds ()

135

136 if (elapsed_time != 0):

137 cur_fps = np.around(frames / elapsed_time , 1)

138

139 # Convert frame to gray scale

140 gray = cv2.cvtColor(frame , cv2.COLOR_BGR2GRAY)

141

142 # Detect faces:

143 rects = detector(gray , 0)

144

145 # For one face

146 if(len(rects) > 0):

147 mask [:,:] = 0

148 shape = predictor(gray , rects[0]) # Get the shape using the predictor

:

149 shape = auxiliar_functions.shape_to_np(shape) # Convert the shape to

numpy array

150

151 for region in drawing_tools.roi_regions_of_interest: # Add ROI

regions

152 cv2.fillConvexPoly(mask , shape[region], (255, 255, 255))

153

154 for region in drawing_tools.ocular_contours: # Remove ocular regions

155 cv2.fillConvexPoly(mask , shape[region], (0,0,0))

156
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157 masked_face = cv2.bitwise_and(frame , mask) # apply the mask

158

159 number_of_skin_pixels = np.sum(mask >0)

160

161 # compute mean

162 r = np.sum(masked_face [:,:,2])/number_of_skin_pixels

163 g = np.sum(masked_face [:,:,1])/number_of_skin_pixels

164 b = np.sum(masked_face [:,:,0])/number_of_skin_pixels

165

166 avg_rgb[frame_count] = np.array([r,g,b]) # if no face detected?

167

168 frame = cv2.bitwise_and(frame , mask)

169

170 # Resample color signal

171 if(frame_count > 0):

172 frame_range , interp_values = auxiliar_functions.resample_2

readings_linear(frame_time_stamps[0], cap_fps , avg_rgb[

frame_count - 1], frame_time_stamps[frame_count - 1], avg_rgb[

frame_count], frame_time_stamps[frame_count ])

173 resampled_color_signal[frame_range ,:] = interp_values

174 num_resampled_frames = num_resampled_frames + frame_range.shape[0]

175

176 # POS method + IIR filtration

177 if(num_resampled_frames > l):

178

179 # POS method

180 start = last_frame_POS

181 stop = num_resampled_frames - l

182

183 for t in range(start , stop):

184 #t = 0

185 # Step 1: Spatial averaging

186 C = resampled_color_signal[t:t+l-1 ,:].T

187

188 #Step 2 : Temporal normalization

189 mean_color = np.mean(C, axis=1)

190 diag_mean_color = np.diag(mean_color)

191 diag_mean_color_inv = np.linalg.inv(diag_mean_color)
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192 Cn = np.matmul(diag_mean_color_inv ,C)

193

194 #Step 3: Projection to plane orthogonal to skin

195 projection_matrix = np.array ([[0,1,-1],[-2,1,1]])

196 S = np.matmul(projection_matrix ,Cn)

197

198 #Step 4: 2D signal to 1D signal (tuning)

199 std = np.array([1,np.std(S[0 ,:])/np.std(S[1 ,:])])

200 P = np.matmul(std ,S)

201

202 #Step 5: Overlap -Adding

203 H[t:t+l-1] = H[t:t+l-1] + (P-np.mean(P))/np.std(P)

204

205 last_frame_POS = stop

206

207 # IIR filtration

208 iir_filtered_signal[start:stop], z = signal.sosfilt(sos , -H[start:

stop], zi=z)

209

210 # AR model (periodic)

211 if(last_frame_POS > ar_frame + ar_window_length):

212 ar_stop = ar_frame + ar_window_length

213 ar_values , error = arcovar(iir_filtered_signal[ar_frame:ar_stop], 12)

214 psd = arma2psd(ar_values , sides='centerdc ', T=cap_fps)

215 psd = psd[int(len(psd) / 2):]

216 freq_vector = np.linspace(0, cap_fps / 2, len(psd))

217 cov_max_freq_idx = np.argmax(psd)

218 cov_max_freq = freq_vector[cov_max_freq_idx]

219 cov_max_freq_hz = round(cov_max_freq , 2)

220 cov_max_freq_bpm = round(cov_max_freq * 60, 2)

221 curr_pp_avg = 1 / cov_max_freq_hz

222

223 if ar_frame == 0:

224 curr_pp_avg = 1 / cov_max_freq_hz

225 else:

226 if abs (((1 / curr_pp_avg) * 60) - (cov_max_freq_hz * 60)) < 25: #

block changes in bpm bigger than 25 bpm

227 curr_pp_avg = 1 / cov_max_freq_hz
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228

229 ar_frame = ar_stop

230 print('PR estimate last ' + str(ar_window_duration) + 'sec = ' + str(

cov_max_freq_bpm) + 'bpm')

231

232

233 # MMPPD peak detection

234 if(ar_frame > 0):

235

236 for i in range(mmpd_frame , last_frame_POS):

237

238 if(iir_filtered_signal[i] > iir_filtered_signal[i-1]):

239 mmpd_num_upsteps = mmpd_num_upsteps + 1

240 # Looking for the valley

241 if(mmpd_possible_valley == False):

242 mmpd_possible_valley = True # Potential valley has been

found

243 value_possible_valley = iir_filtered_signal[i-1]

244 time_possible_valley = resampled_time[i-1]

245 else:

246 # Looking for the peak

247 if(mmpd_num_upsteps > mmpd_threshold):

248 mmpd_possible_peak = True # Potential peak has been found

249 value_possible_peak = iir_filtered_signal[i-1]

250 time_possible_peak = resampled_time[i-1]

251 upstep_possible_peak = mmpd_num_upsteps

252 else:

253 if(mmpd_possible_valley == True):

254 if(iir_filtered_signal[i] <= value_possible_valley):

255 value_possible_valley = iir_filtered_signal[i] #

Updating the potential valley

256 time_possible_valley = resampled_time[i]

257

258 # A peak has been found

259 if(mmpd_possible_peak == True): # A peak has been found

260 if(iir_filtered_signal[i-1] > value_possible_peak):

261 value_peak = iir_filtered_signal[i-1]

262 time_peak = resampled_time[i-1]
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263 else:

264 value_peak = value_possible_peak

265 time_peak = time_possible_peak

266

267 # Update peak detection variables

268 time_peak_frame = int(time_peak * cap_fps)

269 mmpd_peaks_signal[time_peak_frame] = value_peak

270

271 # A valley has been found

272 if(mmpd_possible_valley == True):

273 value_valley = value_possible_valley

274 time_valley = time_possible_valley

275 mmpd_possible_valley = False

276

277 mmpd_threshold = 0.37 * upstep_possible_peak #

Updating threshold

278 mmpd_possible_peak = False

279

280 mmpd_num_upsteps = 0 # Resetting number of upsteps

281

282 mmpd_frame = last_frame_POS

283

284 # Referee

285 if(mmpd_frame > 1):

286 if(referee_num_peaks == 0):

287 # INITIALIZE

288 first_peaks_idx = np.nonzero(mmpd_peaks_signal [: last_frame_POS ])[

0][0]

289 referee_p_peaks.append(first_peaks_idx / cap_fps)

290 referee_boolean[first_peaks_idx] = 1

291 referee_num_peaks += 1

292 next_peak_pred = int(( curr_pp_avg + first_peaks_idx / cap_fps) *

cap_fps)

293 referee_half_width_frames = int(( curr_pp_avg * cap_fps) / 2)

294 max_pred_loca = next_peak_pred + referee_half_width_frames + 1

295 min_pred_loca = next_peak_pred - referee_half_width_frames

296

297 while(max_pred_loca < mmpd_frame + 4):
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298

299 peaks_idx = np.nonzero(mmpd_peaks_signal[min_pred_loca:

max_pred_loca ])[0] + min_pred_loca

300

301 if(peaks_idx.size == 0):

302 referee_new_peak_index = int((( max_pred_loca + min_pred_loca)

/ 2))

303 elif(peaks_idx.size < 2):

304 referee_new_peak_index = peaks_idx[0]

305 else:

306 peaks_distance_to_pred = peaks_idx - (( max_pred_loca +

min_pred_loca) / 2)

307 peaks_distance_to_pred = np.abs(peaks_distance_to_pred)

308 referee_new_peak_index = peaks_idx[np.argmin(

peaks_distance_to_pred)]

309

310 # Update peak detection variables

311 referee_p_peaks.append(referee_new_peak_index / cap_fps)

312 referee_boolean[referee_new_peak_index] = 1

313 referee_num_peaks += 1

314

315 referee_pp.append(referee_p_peaks[-1] - referee_p_peaks[-2])

316

317 # Make prediction

318 next_peak_pred = referee_new_peak_index + int(curr_pp_avg *

cap_fps)

319 referee_half_width_frames = int(( curr_pp_avg * cap_fps) / 2)

320 max_pred_loca = next_peak_pred + referee_half_width_frames + 1

321 min_pred_loca = next_peak_pred - referee_half_width_frames

322

323 # Build raw RR signal , filter and downsample

324 if(referee_num_peaks - 1 > num_of_raw_pp_added):

325 # Build raw RR signal

326 raw_pp_signal[int(last_peak_time * cap_fps):int(

last_peak_time * cap_fps) + 60] = 1000 * referee_pp[-1] #

Convert to miliseconds

327 num_of_raw_pp_added = num_of_raw_pp_added + 1

328 last_peak_time = referee_p_peaks[-1]
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329

330 # PLOTS

331 if(last_frame_POS > plt_window_size):

332 # Plot POS signal

333 pos_curve.setData(x=resampled_time[last_frame_POS - plt_window_size:

last_frame_POS], y=-H[last_frame_POS - plt_window_size:

last_frame_POS ])

334

335 # Plot IIR fitration

336 filtered_curve.setData(x=resampled_time[last_frame_POS -

plt_window_size:last_frame_POS], y=iir_filtered_signal[

last_frame_POS - plt_window_size:last_frame_POS ])

337

338 # Plot peak detection

339 estimated_peaks_curve.setData(x=resampled_time[last_frame_POS -

plt_window_size:last_frame_POS], y = mmpd_peaks_signal[

last_frame_POS - plt_window_size:last_frame_POS], pen=None ,

symbol='o', symbolPen=None , symbolSize=4, symbolBrush =('r'))

340 referee_peaks_curve.setData(x=resampled_time[last_frame_POS -

plt_window_size:last_frame_POS], y = 25 * referee_boolean[

last_frame_POS - plt_window_size:last_frame_POS], pen=None ,

symbol='o', symbolPen=None , symbolSize=4, symbolBrush =('y'))

341

342 # Plot PP signal

343 raw_pp_curve.setData(x=resampled_time[last_frame_POS -

plt_window_size:last_frame_POS], y=raw_pp_signal[last_frame_POS -

plt_window_size:last_frame_POS], pen=(50,50,200))

344 else:

345 # Plot POS signal

346 pos_curve.setData(x=resampled_time [: last_frame_POS], y=-H[:

last_frame_POS ])

347

348 # Plot IIR fitration

349 filtered_curve.setData(x=resampled_time [: last_frame_POS], y=

iir_filtered_signal [: last_frame_POS ])

350

351 # Plot peak detection
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352 estimated_peaks_curve.setData(x=resampled_time [: last_frame_POS], y =

mmpd_peaks_signal [: last_frame_POS], pen=None , symbol='o',

symbolPen=None , symbolSize=4, symbolBrush =('r'))

353 referee_peaks_curve.setData(x=resampled_time [: last_frame_POS], y = 25

* referee_boolean [: last_frame_POS], pen=None , symbol='o',

symbolPen=None , symbolSize=4, symbolBrush =('y'))

354

355 # Plot PP signal

356 raw_pp_curve.setData(x=resampled_time [: last_frame_POS], y=

raw_pp_signal [: last_frame_POS], pen=(50,50,200))

357 QtGui.QApplication.processEvents ()

358

359 # PRINTS

360 # PR

361 if(len(referee_pp) > 1): # Long -term

362 pr_long_term = (1 / np.mean(referee_pp)) * 60

363 cv2.putText(frame , 'Long -term PR: ' + str(round(pr_long_term , 2)) + '

bpm', (5, 20), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (0, 100, 255), 1,

cv2.LINE_AA)

364 if(len(referee_pp) > 5): # Five -rr

365 pr_5 = (1 / np.mean(referee_pp[-5:])) * 60

366 cv2.putText(frame , 'Last -5-PP PR: ' + str(round(pr_5, 2)) + ' bpm', (

5, 40), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (100, 100, 255), 1, cv2.

LINE_AA)

367

368 # PRV

369 if(last_frame_POS > td_window_length):

370 min_considered_peak = bisect.bisect_left(referee_p_peaks , (

last_frame_POS - td_window_length) / cap_fps)

371 considered_intervals = [x * 1000 for x in referee_pp[

min_considered_peak + 1:]]

372 td_feat = get_time_domain_features(considered_intervals)

373 cv2.putText(frame , 'SDNN_1min: ' + str(round(td_feat['sdnn'], 2)) + '

ms', (5, 60), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (100, 100, 200), 1,

cv2.LINE_AA)

374 cv2.putText(frame , 'RMSSD_1min: ' + str(round(td_feat['rmssd '], 2)) +

' ms', (5, 80), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (150, 100, 200),

1, cv2.LINE_AA)
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375 fd_feat = get_frequency_domain_features(considered_intervals , method=

"lomb")

376 cv2.putText(frame , 'LF_1min: ' + str(round(fd_feat['lfnu'],3)) + ' nu

', (5, 100), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (255, 153, 204), 1,

cv2.LINE_AA)

377 cv2.putText(frame , 'HF_1min: ' + str(round(fd_feat['hfnu'],3)) + ' nu

', (5, 120), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (250, 148, 109), 1,

cv2.LINE_AA)

378 cv2.putText(frame , 'LF/HF_1min: ' + str(round(fd_feat['lf_hf_ratio '],

2)), (5, 140), cv2.FONT_HERSHEY_SIMPLEX , 0.7, (245, 143, 104), 1

, cv2.LINE_AA)

379

380 # Print estimated fps on the image

381 cv2.putText(frame , 'FPS: ' + str(round(cur_fps , 1)), (520, 20), cv2.

FONT_HERSHEY_SIMPLEX , 0.7, (0, 255, 0), 1, cv2.LINE_AA)

382

383 # Display the resulting frame

384 cv2.imshow("Real -time pulse rate variability", frame)

385

386 frame_count += 1

387

388 # Press 'q' key to exit

389 if cv2.waitKey(1) & 0xFF == ord('q'):

390 break

391

392 # Release everything:

393 video_capture.release ()

394 cv2.destroyAllWindows ()

395 qt_plot.quit()

396 win.close()
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Listing A.2: Drawing tools module

1 ### Assign IDs to facial landmarks:

2 JAWLINE_POINTS = list(range(0, 17))

3 RIGHT_EYEBROW_POINTS = list(range(17, 22))

4 LEFT_EYEBROW_POINTS = list(range(22, 27))

5 NOSE_BRIDGE_POINTS = list(range(27, 31))

6 LOWER_NOSE_POINTS = list(range(31, 36))

7 RIGHT_EYE_POINTS = list(range(36, 42))

8 LEFT_EYE_POINTS = list(range(42, 48))

9 MOUTH_OUTLINE_POINTS = list(range(48, 61))

10 MOUTH_INNER_POINTS = list(range(61, 68))

11 ALL_POINTS = list(range(0, 68))

12 FOREHEAD_POINTS = list(range(68,72)) # predicted manually

13

14 ### Define adding ROI regions

15 CENTRAL_FOREHEAD_CUT = [27,68,69]

16 RIGHT_FOREHEAD_CUT = [27,68,1]

17 LEFT_FOREHEAD_CUT = [27,69,15]

18 RIGHT_CHEEK_CUT = [1,3,31,27]

19 LEFT_CHEEK_CUT = [13,15,27,35]

20 NOSE_CUT = [27,31,35]

21 RIGHT_BEARD_CUT = list(range(3,9)) + [33,31]

22 LEFT_BEARD_CUT = list(range(8,14)) + [35,33]

23

24 ### Define contours to be removed

25 RIGHT_OCULAR_CUT_CONTOUR = list(range(17,22)) + [39,40,41,36]

26 LEFT_OCULAR_CUT_CONTOUR = list(range(22,27)) + [45,46,47,42]

27

28 ### Define ROI region of interest

29 ROI_OF_INTEREST = [1,3,31,33,35,13,15,69,68]

30

31 ### Group ROI regions of interest

32 roi_regions = [CENTRAL_FOREHEAD_CUT ,

33 RIGHT_FOREHEAD_CUT ,

34 LEFT_FOREHEAD_CUT ,

35 RIGHT_CHEEK_CUT ,

36 LEFT_CHEEK_CUT ,

37 NOSE_CUT ,
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38 RIGHT_BEARD_CUT ,

39 LEFT_BEARD_CUT]

40

41 roi_regions_of_interest = [CENTRAL_FOREHEAD_CUT ,

42 RIGHT_FOREHEAD_CUT ,

43 LEFT_FOREHEAD_CUT ,

44 RIGHT_CHEEK_CUT ,

45 LEFT_CHEEK_CUT ,

46 NOSE_CUT]

47

48

49 ### Group contours to remove

50 ocular_contours = [RIGHT_OCULAR_CUT_CONTOUR , LEFT_OCULAR_CUT_CONTOUR]
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Listing A.3: Auxiliar functions module

1 ### Imports

2 import numpy as np

3 import math

4

5 # Correction parameters

6 cheek_correction_ratio = 0.2

7 ocular_correction_ratio = 1.4

8 lower_forhead_ratio = 0.3

9 upper_forehead_ratio = 1.2

10

11 def shape_to_np(dlib_shape , dtype="int"):

12 """ Converts dlib shape object to numpy array """

13

14 # Initialize the list of (x,y) coordinates

15 coordinates = np.zeros (( dlib_shape.num_parts + 4, 2), dtype=dtype)

16

17 # Loop over all facial landmarks and convert them to a tuple with (x,y)

coordinates:

18 for i in range(0, dlib_shape.num_parts):

19 coordinates[i] = (dlib_shape.part(i).x, dlib_shape.part(i).y)

20

21 # Add forehead points

22 coordinates[dlib_shape.num_parts :] = predict_forehead_box(coordinates)

23

24 # Correct cheek points (2 and 16 are corrected through 28; 4 and 14,

through 32, 36 respectively)

25 coordinates[1] = coordinates[1] + cheek_correction_ratio * (coordinates[2

7] - coordinates[1]) # point 2

26 coordinates[3] = coordinates[3] + cheek_correction_ratio * (coordinates[3

1] - coordinates[3]) # point 4

27 coordinates[13] = coordinates[13] + cheek_correction_ratio * (coordinates

[35] - coordinates[13]) # point 14

28 coordinates[15] = coordinates[15] + cheek_correction_ratio * (coordinates

[27] - coordinates[15]) # point 16

29

30 # Correct ocular regions points

31 # Right ocular region ()
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32 right_ocular_region_points = list(range(17,22)) + [39,40,41,36]

33 right_ocular_center = np.sum(coordinates[right_ocular_region_points],

axis=0) / len(right_ocular_region_points)

34 for r_ocular_point in right_ocular_region_points:

35 coordinates[r_ocular_point] = right_ocular_center +

ocular_correction_ratio * (coordinates[r_ocular_point] -

right_ocular_center)

36

37 # Left ocular region ()

38 left_ocular_region_points = list(range(22,27)) + [45,46,47,42]

39 left_ocular_center = np.sum(coordinates[left_ocular_region_points], axis=

0) / len(left_ocular_region_points)

40 for l_ocular_point in left_ocular_region_points:

41 coordinates[l_ocular_point] = left_ocular_center +

ocular_correction_ratio * (coordinates[l_ocular_point] -

left_ocular_center)

42

43 # Return the list of (x,y) coordinates:

44 return coordinates

45

46

47 def predict_forehead_box(np_shape):

48 x_19 = np_shape[18][0]

49 y_19 = np_shape[18][1]

50 x_26 = np_shape[25][0]

51 y_26 = np_shape[25][1]

52 x_29 = np_shape[28][0]

53 y_29 = np_shape[28][1]

54 x_31 = np_shape[30][0]

55 y_31 = np_shape[30][1]

56

57 x_nose_vector = x_29 - x_31

58 y_nose_vector = y_29 - y_31

59

60 # Mark predicted forehead points

61 # FH1

62 x_FH1 = int(x_19 + upper_forehead_ratio*x_nose_vector)

63 y_FH1 = int(y_19 + upper_forehead_ratio*y_nose_vector)
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64

65 # FH2

66 x_FH2 = int(x_26 + upper_forehead_ratio*x_nose_vector)

67 y_FH2 = int(y_26 + upper_forehead_ratio*y_nose_vector)

68

69 # FH3

70 x_FH3 = int(x_19 + lower_forhead_ratio*x_nose_vector)

71 y_FH3 = int(y_19 + lower_forhead_ratio*y_nose_vector)

72

73 # FH4

74 x_FH4 = int(x_26 + lower_forhead_ratio*x_nose_vector)

75 y_FH4 = int(y_26 + lower_forhead_ratio*y_nose_vector)

76

77 FH_points = np.array ([( x_FH1, y_FH1), (x_FH2, y_FH2), (x_FH4, y_FH4), (

x_FH3, y_FH3)], dtype=np.int32)

78

79 return FH_points

80

81 def resample_2readings_linear(ts0, resampling_rate , xi , tsi , xj , tsj):

82 ti = tsi - ts0

83 tj = tsj - ts0

84 slope = (xj - xi) / (tj - ti)

85 starting_frame = math.ceil(ti * resampling_rate)

86 end_frame = math.floor(tj * resampling_rate)

87 frame_range = np.arange(starting_frame , end_frame + 1)

88 values = np.array ([xi + slope * ( x / resampling_rate - ti) for x in

frame_range], dtype=np.float64)

89 return frame_range , values

84



85


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Background
	1.2 Novelty
	1.3 Thesis layout

	2 Literature review
	2.1 Heart rate variability
	2.1.1 Heart and heartbeat
	2.1.2 Regulation of the heart rate
	2.1.3 The electrocardiogram
	2.1.4 HRV principles
	2.1.5 HRV metrics and norms
	2.1.6 HRV and psychophysiological theory
	2.1.7 Applications of heart rate variability to depression

	2.2 Photoplethysmography
	2.2.1 Photoplethysmography principles
	2.2.2 HRV vs. PRV

	2.3 Pulse rate variability applications in mental health
	2.3.1 Stress
	2.3.2 Emotion
	2.3.3 Other topics

	2.4 Remote photoplethysmography
	2.4.1 Skin reflection model
	2.4.2 Remote photoplethysmography building blocks


	3 Methods
	3.1 Face detection
	3.2 Facial landmarks prediction
	3.3 ROI selection
	3.4 RGB signal extraction
	3.5 Resampling
	3.6 BVP signal extraction
	3.7 Peak detection
	3.8 HR and PRV estimates

	4 Results and Discussion
	4.1 Offline testing
	4.2 Live demonstration

	5 Conclusion
	5.1 Conclusions
	5.2 Future Work
	Bibliography


	Bibliography
	Appendix A

	A Code of Project

